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We propose that an excitonic gap can be generated along nodal directions by Coulomb interaction in the
mixed state of d-wave cuprate superconductors. In a superconductor, the Coulomb interaction usually cannot
generate any fermion gap since its strength is weakened by superfluidity. It becomes stronger as superfluid
density is suppressed by external magnetic field, and is able to generate a gap for initially gapless nodal
quasiparticles beyond some critical field Hc. By solving the gap equation, it is found that the nodal gap
increases with growing field H, which leads to a suppression of thermal conductivity at zero temperature. This
mechanism naturally produces the field-induced thermal metal-insulator transition observed in transport
experiments.
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I. INTRODUCTION

The low-energy spectral and transport properties of nodal
quasiparticles in d-wave cuprate superconductor are very im-
portant issues. In the absence of external magnetic field, the
ground state is occupied by uniform superconductivity. For a
clean superconductor, the low-energy density of states van-
ishes linearly as N������� upon approaching the Fermi sur-
face. It acquires a finite value at zero energy in the presence
of weak impurity scattering. In this case, the nodal quasipar-
ticles exhibit universal transport behavior in the sense that
the electric, thermal, and spin conductivities are independent
of impurity scattering rate at the �→0, T→0 limit.1–3 The
zero-temperature thermal conductivity � is of particular in-
terests since it is not affected by vertex corrections.2 Remark-
ably, the predicted universal thermal conductivity has been
confirmed by heat transport measurements at optimal
doping.4,5

When placed in an external perpendicular magnetic field,
the superconductor enters into the mixed state in the range
Hc1�H�Hc2. Inside the vortex cores, the superfluid current
is significantly reduced by the magnetic field. The low-
energy fermionic excitations in the mixed state are expected
to have rather different low-energy behaviors comparing
with those in the uniform zero-field condensate.3 As revealed
by heat transport measurements, the thermal conductivity
loses its universality and depends on the impurity scattering
rate.3 In addition, on the underdoping side, it decreases as the
magnetic field grows up.6,7 There seems to be a field-induced
thermal metal-to-insulator transition in some underdoped cu-
prate superconductors.6,7 These experimental results can be
intuitively understood by assuming that the nodal fermions
acquire finite mass gap in the mixed state. A phenomenologi-
cal expression for the nodal gap was proposed8 to understand
the field-induced reduction in thermal conductivity. How-
ever, the dynamic origin for the gap generation has not been
discussed.

The goal of this paper is to suggest a mechanism for
opening the field-induced gap for the initially gapless nodal
quasiparticles. Generally, this mechanism would be realized
by some kind of fermion self-interaction or boson-mediated
interaction. Such interaction should have the following two

features: it is weak enough to be irrelevant in the uniform
superconducting state; it gets stronger with growing perpen-
dicular magnetic field so that a finite gap is generated beyond
some critical magnetic field Hc.

Qualitatively, the U�1� gauge fluctuation arising from
strong correlation provides a good candidate for such mecha-
nism. The t-J model of cuprate superconductors can be theo-
retically treated by the slave boson method. After making
mean-field analysis and including fluctuations, there appears
an emergent U�1� gauge field which interacts strongly with
spin-carrying spinons and charge-carrying holons.9 The su-
perconductivity is realized by holon condensation below Tc,
while the d-wave energy gap is formed by spinon pairing. In
the superconducting state, the low-energy elementary excita-
tions are gapless nodal spinons and the U�1� gauge boson is
gapped via the Anderson-Higgs mechanism. The finite gauge
boson gap weakens gauge interaction, so usually no fermion
gap can be generated. However, once the superfluid density
is suppressed by external magnetic field, the gap of U�1�
gauge boson decreases and the strength of gauge interaction
increases with growing magnetic field.10 Then a finite gap for
nodal spinons could be generated by gauge fluctuation, lead-
ing to suppression of thermal conductivity. Unfortunately, it
is hard to average over the vortex distributions within this
formalism due to the complexity brought by spin-charge
separation.

The gapless nodal fermions might acquire a gap via the
magnetic catalyst mechanism11 when they are placed in an
external magnetic field. But this mechanism depends on a
crucial assumption that the fermion stays in the lowest Lan-
dau level.11,12 However, in the case of high-temperature su-
perconductor, the Landau level has been shown not to be the
appropriate description of fermion energy spectrum in the
mixed state.13 Therefore, the magnetic catalyst mechanism is
unlikely to be at work.

In this paper, we study the possibility of gap generation
due to the long-range Coulomb interaction between charged
nodal quasiparticles. Two quasiparticles that carry the same
charges always experience a repulsive Coulomb force, while
the quasiparticle and quasihole experience an attractive Cou-
lomb force. When the attractive force is sufficiently strong, it
is possible that a Dirac quasiparticle is combined with a
Dirac quasihole to form a stable excitonic pair. Through this
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mechanism, the gapless fermion acquires a finite excitonic
gap.

Recently, this kind of gap generation was argued to lead
to an insulating ground state in single layer graphene, when
the Coulomb interaction strength g is larger than some
threshold gc and the fermion flavor N is less some threshold
Nc.

14–16 Moreover, an interesting superfluidity was predicted
to exist in bilayer graphene based on a similar paring
instability.17 The long-range Coulomb interaction is also very
important in cuprate superconductors. First of all, it lifts the
gapless Goldstone mode up to plasmon mode, which is ac-
tually the rudiment of Higgs mechanism. Its importance in
the formation of stripe phase has been emphasized by several
authors.18 However, its role and influence on nodal quasipar-
ticles are still in debate.19 In the absence of a reliable micro-
scopic theory of Coulomb interaction, we resort to the phe-
nomenological approach.

From the available extensive experiments, we know that
the nodal quasiparticles have rather long mean-free path and
behave like well-defined Bogoliubov-Landau quasiparticles
in the uniform superconducting state.20,21 This fact and its
excellent agreement with analysis of the conventional
Bardeen-Cooper-Schrieffer �BCS� type1,2,20 implies that the
Coulomb interaction must be fairly weak in the supercon-
ducting state and generally cannot generate any fermion gap,
except in the lightly doping region. On the other hand, in the
nonsuperconducting ground state, it is generally believed
that there are no well-defined Landau quasiparticles. It is
reasonable to expect that the long-range Coulomb interaction
is very strong in this state. The field-induced mixed state lies
between these two extreme limiting cases. As the superfluid
density decreases with magnetic field, the effective strength
of Coulomb interaction gets stronger. For sufficiently strong
interaction, a dynamical fermion gap can be generated by
forming excitonic pairs. To implement this intuitive picture
with �explicit� computations, we assume a phenomenological
form for the effective interaction strength which is a function
of magnetic field H. After solving the associated gap equa-
tion, we find that the growing magnetic field drives the sys-
tem toward a phase transition into excitonic insulating state
beyond some critical value Hc. Once the nodal fermion ac-
quires a finite gap m, the low-energy fermionic excitations
are significantly suppressed below the scale m, leading to
reduction in thermal conductivity. �This can help to under-
stand the transport behaviors observed in the mixed state of
cuprate superconductors.�

Besides the thermal metal-insulator transition, another im-
portant issue about field-induced phenomena is the enhance-
ment of antiferromagnetic correlations inside the vortex
cores. Such microscopic coexistence of magnetic order and
superconductivity has been investigated experimentally22–28

and theoretically.29,30 From the field-theoretic point of view,
the field-induced antiferromagnetism or spin-density wave
can be represented by a mass term for nodal fermions.8,31

With this identification, the mechanism responsible for the
thermal metal-insulator transition can also account for the
existence of field-induced magnetic order in the mixed state.

Before presenting the technical details, we would like to
point out that a number of assumptions and approximations
will be used to simplify discussions on the issue of dynami-

cal gap generation. Thus, the conclusions reached in this pa-
per are reliable only at the qualitative, rather than quantita-
tive, level.

The paper is arranged as follows. In Sec. II, we build the
model and write down the gap equation. In Sec. III, we pro-
pose the phenomenological form of the effective Coulomb
interaction and calculate its dependence on magnetic field H.
In Sec. IV, we solve the gap equation and give the field
dependence of critical coupling gc and dynamical gap. The
qualitative understanding of transport experiments is also
discussed. We ends with a summary and discussion in Sec. V.

II. MODEL HAMILTONIAN AND GAP EQUATION

We begin our discussion with the following Hamiltonian
of d-wave superconductor:

H0 = �
k

�k
†��k�3 − �k�1��k, �1�

where the standard two-component Nambu spinor represen-
tation �k

† = �ck↑
+ ,c−k↓� is adopted and �i is Pauli matrix. The

electron dispersion is �k=−2t�cos kxa+cos kya�−�0 with �0
being the chemical potential and the d-wave energy gap is
�k=

�0

2 �cos kxa−cos kya�. The quasiparticle spectrum is Ek

=��k
2 +�k

2, which has four nodal points at the Fermi level.
Linearizing the dispersion in the vicinity of the nodes, one
obtains the spectrum Ek=�vF

2k1
2+v�

2 k2
2, where k1 is perpen-

dicular to the Fermi surface and k2 is parallel to the Fermi
surface. The four-component Dirac spinor can be defined
as8,32,33

	1�2�
† �q,�n� = 	c↑

†�k,�n�,c↓�− k,− �n�,

c↑
†�k − Q1�2�,�n�,c↓�− k + Q1�2�,− �n�
 ,

where Q1�2�=2K1�2� is the wave vector that connects the
nodes within the diagonal pairs, k=Ki+q with q
Ki. Here,
we use the four-component spinor because it is impossible to
define chiral symmetry in two-component representation of
fermion field in �2+1� dimensions.

The continuum Hamiltonian of free Dirac fermions can be
written as

H0 = i� d2r	̄1��1vF�x + �2v��y�	1 + �1 → 2,x ↔ y� ,

�2�

where 	̄=	†�0. The 4�4 matrices can be chosen as �0
=
1 � �0, �1=−i
2 � �3, and �2= i
2 � �1, where 
i acts in
the subspace of the nodes in a diagonal pair and �i acts on
indices inside a Nambu field. There are two matrices anti-
commuting with them, �3= i
2 � �2 and �5=
3 � �0. The ma-
trices satisfy the Dirac algebra 	�� ,��
=2 diag�1,−1,−1�.

The Hamiltonian for the Coulomb interaction is
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HC =
1

4�
�

i,i�=1

N �
r,r�

	̄i�r��0	i�r�
g

�r − r��
	̄i��r���0	i��r�� .

�3�

The bare Coulomb interaction in momentum space is V0�q�
=g / �q�. The parameter g measures the strength of bare Cou-
lomb interaction in the nonsuperconducting ground state.34 It
is easy to see that this model is very similar to that in single-
layer graphene, where the low-energy excitations are also
massless Dirac fermions. Unlike the semimetal background
in graphene, in the present case the Dirac fermions are in a
charge condensate, which unavoidably affect their properties
and the Coulomb interaction between them.

From the results obtained in graphene, it is known that
sufficiently strong Coulomb interaction can lead to finite ex-
citonic gap, when the fermion flavor is below a critical
value.14–16 We speculate that a similar pairing instability to
occur in the mixed state of d-wave superconductor. When
studying the gap generation, we fix the physical fermion fla-
vor N=2. Thus, coupling g becomes the only variable that
tunes the excitonic phase transition.

The Hamiltonian is invariant under the continuous chiral
transformation 	→ei��3�5�	. It will be dynamically broken
once the Dirac fermion acquires a finite mass via the effec-
tive Coulomb interaction. This phenomenon is nonperturba-
tive in nature and generally can be studied by analyzing the
self-consistent Dyson equation

G−1�p� = G0
−1�p� + T �

n=−�

� � d2k

�2��2�0G�k��0�p,k�V�p − k� ,

�4�

where the �2+1�-dimensional momentum is defined as

k = �i�n,k� . �5�

The Matsubara frequency is �n= �2n+1��T for fermions and
�n=2n�T for bosons. Here, �0�p ,k� is the full vertex func-
tion. The free propagator for massless Dirac fermion is

G0�k� =
1

i�n�0 − vFk1�1 − v�k2�2
. �6�

Due to the Coulomb interaction, it becomes the complete
propagator G�p�, which is determined by the Dyson equa-
tion. In the case of �2�1�-dimensional quantum electrody-
namics �QED3�, the dynamical chiral symmetry breaking can
be most conveniently studied using the 1 /N expansion.35

Here we follow the same strategy and keep only the leading
order of 1 /N expansion. So we can neglect the wave-
function renormalization and replace the vertex function �0
by �0. Now the complete propagator can be formally written
as

G�k� =
1

i�n�0 − vFk1�1 − v�k2�2 − m�k�
, �7�

where m�k� denotes the Dirac fermion mass. Further, as
shown in the context of QED3, at least at low energies and to
the leading order of 1 /N expansion, the velocity anisotropy

is irrelevant to the critical behavior.36 We simply set vF
=v�=1 whenever they multiply the momenta �k1 ,k2� in the
gap equation.

The full Coulomb interaction function is

V�q� =
1

�q�/g + N��q�
. �8�

The polarization function ��q� contains all information about
how the Dirac fermions response to the many-particle sys-
tem. We first consider the nonsuperconducting ground state.
Within the random-phase approximation, the fermion propa-
gator G and the vertex function �0 are both replaced by the
bare ones, i.e.,

��q� = − T �
n=−�

� � d2k

�2��2Tr��0G0�k��0G0�k − q�� . �9�

Inserting the expression for the interaction function, the gap
equation can now be written as

m�p� = T �
n=−�

� � d2k

�2��2

m�k�
�n

2 + k2 + m2�k�
1

�q�/g + N��q�
,

�10�

where q= p−k. In the instantaneous approximation, ��q� has
the following zero-frequency expression:37

��q� =
2T

�
�

0

1

dx log�2 cosh
�x�1 − x��q�

2T

 . �11�

Now the gap m is independent of frequency and the fre-
quency summation can be carried out with the result

m�T,p� =� d2k

8�2

m�T,k�
�k2 + m2�T,k�

tanh
�k2 + m2�T,k�

2T

�q�/g + N��q�
.

�12�

In the limit of zero temperature, ��q�= �q� /8, the gap equa-
tion further simplifies to

m�p� =� d2k

8�2

m�k�
�k2 + m2�k�

1

�q�/g + N�q�/8
. �13�

The nontrivial solution m�p� of this integral equation signals
the occurrence of dynamical mass generation.

When the ground state is occupied by the uniform super-
conductivity, the Coulomb interaction function must be
modified. In the mixed state, the superfluid density is a non-
uniform quantity which has different values at different spa-
tial positions. To study the gap equation in the mixed state,
we should average over the vortices and obtain a mean value
of superfluid density. This is the task of the next section.

III. ANSATZ OF EFFECTIVE INTERACTION

In the underdoping and optimal doping regions, the
ground state is occupied by the superconductivity, which sig-
nificantly weakens the Coulomb interaction between Dirac
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fermions. Such effect can be described by calculating the
polarization function that incorporates the effect of finite su-
perfluid density. However, it is not clear how to correctly
calculate the polarization function in the superconducting
state, so we will assume a phenomenological form for the
effective interaction function. From the experimental facts,
we know that the interaction must reach its minimal value
when the superfluid density �s takes its maximal value. As
�s decreases with growing magnetic field H, the effective
interaction strength increases and eventually takes its maxi-
mal value after the superconductivity is completely de-
stroyed. We assume the following ansatz for the effective
interaction function in the superconducting state:

V�q,H� =
1

�q�/g + N��q�
1

1 + ��s�H�
, �14�

where � is an adjustable parameter. This is the simplest func-
tion that can describe the reduction in strength by superfluid
density. It is largest at the limit �s=0, and is smallest at the
limit H=0. The function �1+NV0�q���q���1+��s�H�� can
be considered as the effective dielectric function of super-
conducting state. In the mixed state, the field-dependent su-
perfluid density �s�H� controls the effective strength of Cou-
lomb interaction. The parameter � must be properly chosen
so that a moderately strong magnetic field Hc separates the
gapless and gaped phases. In order to see how the critical
point depends on H, we need to solve the gap equations after
including �s�H�.

To study the gap equation, the superfluid density �s�H�
should be obtained by averaging over the vortices. In the
mixed state, the low-energy properties of d-wave supercon-
ductor are dominated by the extended quasiparticles in the
bulk material, unlike the case of conventional s-wave super-
conductor. Volovik38 proposed a semiclassical approach and
showed that the density of states varies as �H at low tem-
peratures, which has been observed by experiments.3 Within
the semiclassical treatment, the effects of circulating super-
current around vortices can be represented by a Doppler
shift39–41 in the quasipartilce spectrum, �→�+k ·vs�r�,
where vs�r� is the superfluid velocity at a position r and k is
the quasiparticle momentum which can be approximated by
its value at the node. Then the fermion Green’s function can
be written as G�� ,k ,r�=G��+�i�r� ,k�, where �i�r�
=ki ·vs�r�. The local value F�r� of any physical quantity F
determined by the Green’s function can be obtained using the
above local Green’s function. The field-dependent quantity
F�H� is written as the following spatial average F�H�
= 1

A�d2rF��+��r��, where the integral is taken over a unit
cell of the vortex lattice with area A. Such averaging integral
depends on the vortex distribution. The field-dependent
quantity is

F��,H� = �
−�

�

d�F�� + ��P��� , �15�

with probability function P���= 1
A�d2r���−k ·vs�r��.

There are several possible choices of P���, which were
discussed in Ref. 41. For example, the distribution function

of vortex liquid or solid is P���=
EH

2

2��2+EH
2 �3/2 ; for disordered

vortex state, it takes the form P���= 1
��EH

exp�− �2

EH
2 �. The typi-

cal energy scale of Doppler shift is EH=
vF

2R =
vF

2
��H

�0
, where

R= ��0 /�H�1/2 is the radius of the unit cell of vortex lattice
and �0=hc /2e is one quantum of magnetic flux. The field
dependence of a physical quantity, such as density of state or
specific heat, depend somewhat on the choices of distribution
function, but the qualitative result is not sensitive to the
choice.

The computation of superfluid density �s�H� within the
semiclassical approximation has already been performed in
Ref. 33, so we just list the basic steps and cite the results.
The superfluid stiffness is given by2,33

�s
ij�T,H� = �ij − �n

ij�T,H� , �16�

where �ij is the diamagnetic tensor and �n represents the
normal-fluid density divided by the carrier mass. In the Mat-
subara formalism, the normal-fluid density is33

�n
ij = − T �

n=−�

� �
HBZ

d2k

�2��2vF
i �k�vF

j �k� ,

Tr�G�i�n,k��0�5G�i�n,k��0�5� , �17�

with the i-component velocity vF
i . Here, HBZ means the

halved Brillouin zone of the d-wave superconductors, i.e.,
the domain with two neighboring nodes. The averaged
normal-fluid density is given by33

�n
ij�H� = �

−�

�

d�P����
HBZ

d2k

�2��2�
−�

�

d� tanh
�

2T

vF
i vF

j

4i�

� Tr�GA�� − �,k��0�5GA�� − �,k��0�5

− GR�� − �,k��0�5GR�� − �,k��0�5� . �18�

In principle, the superfluid density should be calculated
by including the complete fermion propagators GR,A�� ,k�
into Eq. �18�. Hence it actually satisfies an equation that
couples self-consistently to the gap equation. It is not an easy
task to solve these coupled equations in practice. However,
there is a remarkable simplification if we are mainly inter-
ested in what happens in the vicinity of the critical point of
chiral phase transition. Near the bifurcation point, the gap
equation can be linearized and the gap appearing in the su-
perfluid density can be taken to be zero. In the limit m→0,
the normal-fluid density finally becomes33

�n�H� =
vF

2�v�
�

−�

�

d�P���J�m,�� , �19�

with J���=2���. If we adopt the distribution function P��� of
vortex liquid, then the superfluid density

�s�H� = � −
vF

�v�

EH. �20�

Here, � is the zero-temperature superfluid density in the ab-
sence of magnetic field and the ratio between vF and v�

appears as a coefficient. Although the anisotropy is irrelevant
when vF��� multiplies particle momenta, the ratio might be
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important in this expression. We simply set the ratio vF /v�

=20 in the following discussions.

IV. FIELD DEPENDENCE OF CRITICAL COUPLING AND
THERMAL CONDUCTIVITY

After getting the effective Coulomb interaction, we now
study the self-consistent gap equation

m�p� =� d2k

8�2

m�k�
�k2 + m2�k�

1

�q�/g + N�q�/8
1

1 + ��s�H�
.

�21�

This integral equation can be solved numerically by the pa-
rameter embedding method, with the Coulomb interaction
strength g being the turning parameter. There is a critical
value gc that separates the chiral-symmetric phase �m=0 for
g�gc� from the symmetry-breaking phase �m�0 for g�gc�.
gc is just the critical point of chiral phase transition. We can
see that excitonic pairing is quite different from conventional
BCS-type pairing: the former is produced only by suffi-
ciently strong, attractive Coulomb force between particles
and holes, while the latter is triggered by arbitrary weak
attractive force between electrons. The excitonic gap breaks
the chiral symmetry and leads to the formation of antiferro-
magnetism or spin-density wave in the field-induced vortex
state.

Following Ref. 33, the zero-temperature superfluid den-
sity is taken to be �=1500 K and the energy scale EH

�30�HKT−1/2. The parameter � is a variable �in unit of
eV−1� depending on doping concentration and the type of
cuprate superconductors. It surely is not a universal quantity
and cannot be uniquely determined. For completeness, we
consider a number of possible values, �=4,5 ,6 ,7. For each
value of �, the relationship between critical strength gc and
magnetic field H is shown in Fig. 1. As it turns out, critical
strength gc decreases as the magnetic field H grows up.

To judge whether an excitonic gap is generated for nodal
fermions, we can simply compare the physical strength g

with the critical value gc. Admittedly the exact value of
physical strength g in the nonsuperconducting ground state is
unknown. However, we can make a simple comparison be-
tween its value in cuprate superconductors with that in single
layer graphene. In graphene, the typical value g is about
�20. It is not unreasonable to estimate that the parameter g
in the nonsuperconducting ground state be larger than 20
since the correlation is known to be very strong in cuprate
superconductors.

If we assume that g=50, then the critical field Hc
=0,1.0,3.5,6.0 for parameters �=4,5 ,6 ,7, respectively. For
�=4, a finite excitonic gap is generated even in zero-field
case. This is able to explain several experimental results per-
formed in some underdoped cuprates in the absence of ex-
ternal field H: the finite nodal gap found by photoemission,42

the suppression of thermal conductivity � from the universal
value with lowering doping concentration,43 and the coexist-
ence of competing magnetic order with superconductivity.27

For larger values �=5,6 ,7, the gap is generated only for
magnetic field H larger than some critical value Hc. These
parameters are relevant to the doping regions in which the
nodal gap and competing order appear only in the field-
induced state.22–26 It appears that the phenomenological pa-
rameter � should be an increasing function of doping con-
centration. The cases for other values of g and � can be
analyzed similarly.

The generated gap will surely affect all observable physi-
cal quantities, such as specific heat, electric, and thermal
conductivities. Here we are primarily interested in the zero-
temperature thermal conductivity �. If we assume a constant
fermion gap m and a small impurity scattering rate �imp, then
the zero-temperature thermal conductivity has the
expression8

�

T
�

�imp
2

�imp
2 + m2 . �22�

It is no longer universal and depends explicitly on impurity
scattering rate as well as on gap m. Obviously, in the weak
impurity limit, �imp
m, the thermal conductivity is rapidly
suppressed from its universal value by m. To see how �
varies with magnetic field H, we need to know the field
dependence of gap m�H�. To this end, we solved the gap Eq.
�21� numerically44 and presented the results for �=4 and g
=200 in Fig. 2. It is evident that the gap m�H� is an increas-
ing function of magnetic field H. Thus in the symmetry bro-
ken phase, as magnetic field H grows, the thermal conduc-
tivity is suppressed and the system undergoes a phase
transition from thermal metal to thermal insulator at high-
field limit, which is qualitatively in agreement with transport
experiments.6,7

As revealed by transport experiments, the field-induced
reduction in thermal conductivity occurs only in underdoped
and optimally doped cuprate superconductors.6,7 In the over-
doped region, the thermal conductivity is found to increase
with growing magnetic field H.6,7 This can be understood by
assuming that the d-wave superconductivity responses differ-
ently to external magnetic field in underdoped and over-
doped cuprates. On the underdoping side, the magnetic field

FIG. 1. �Color online� The dependence of critical strength gc on
magnetic field H for several choices of �.
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only reduces the superfluid density inside vortex cores but
leaves the d-wave energy gap essentially unchanged. Due to
the additional excitonic gap along nodal directions generated
by Coulomb interaction, the low-energy nodal quasiparticles
are significantly suppressed, thus reducing the thermal con-
ductivity. However, on the overdoping side, the magnetic
field destroys the d-wave energy gap by directly breaking the
Cooper pairs. As a result, extended quasiparticles are excited
from the condensate and the thermal conductivity increases
with growing field H.

V. SUMMARY AND DISCUSSION

In summary, we proposed a mechanism to explain the
field-induced reduction in thermal conductivity in the mixed
state of d-wave cuprate superconductor. In this mechanism, a
finite gap for nodal fermions is generated by the strong Cou-
lomb interaction between gapless particle and hole excita-
tions. Since the Coulomb interaction is usually weak in the
superconducting state, such gap generation is possible only
after the superfluid density is reduced by strong external
magnetic field. The excitonic gap reduces the thermal con-

ductivity at low temperature, so there is a thermal metal-
insulator transition driven by magnetic field.

There are several effects that might change the critical
behavior of chiral phase transition. For example, the long-
range Coulomb interaction can be screened by the finite
zero-energy density of states produced by disorder scattering
and/or vortex scattering. Such screening effect reduces the
possibility of fermion gap generation.16 Only in clean super-
conductor and at magnetic field much lower than the up criti-
cal field Hc2 this effect can be ignored. On the other hand,
the gap generation can also be promoted by other mecha-
nisms. If there are strong contact interaction between nodal
fermions, the possibility of pairing instability is significantly
enhanced due to the positive contribution from contact
interaction.16 These competing effects can be included into
the above calculations along the steps presented in Ref. 16.

Throughout the present paper, the thermal fluctuation ef-
fect is totally omitted. This effect actually plays at least three
important roles. First, the thermal fluctuation effectively ex-
cites quasiparticles out of the condensate and hence reduces
the superfluid density rapidly. Second, these thermally ex-
cited quasiparticles lead to screening of the Coulomb inter-
action. In addition, the excitonic paring will surely be sup-
pressed by thermal fluctuations. These effects compete with
each other, making the situation rather complicated. This is
why we simply neglect the thermal effects and consider only
nearly zero temperature. To make an extension to finite tem-
peratures, all these three effects should be carefully analyzed.

Finally, we must admit that in the present work we uti-
lized a number of assumptions and approximations when
studying the dynamical gap generation for Dirac fermions.
The results obtained in this paper are only qualitatively reli-
able. In particular, we have not arrived at a quantitative de-
termination of the critical magnetic field Hc. Generally
speaking, Hc must be a function of doping concentration,
temperature, and type of superconductor sample. Unfortu-
nately, it is difficult to quantitatively include any of these
effects. We wish the present work will be put on a firmer
theoretical ground in the future.

ACKNOWLEDGMENTS

We thank Wei Li for helpful discussions. This work was
supported by the NSF of China through Grant No.10674122.

*gzliu@ustc.edu.cn
1 P. A. Lee, Phys. Rev. Lett. 71, 1887 �1993�.
2 A. C. Durst and P. A. Lee, Phys. Rev. B 62, 1270 �2000�.
3 N. E. Hussey, Adv. Phys. 51, 1685 �2002�.
4 L. Taillefer, B. Lussier, R. Gagnon, K. Behnia, and H. Aubin,

Phys. Rev. Lett. 79, 483 �1997�.
5 M. Chiao, R. W. Hill, Ch. Lupien, L. Taillefer, P. Lambert, R.

Gagnon, and P. Fournier, Phys. Rev. B 62, 3554 �2000�.
6 D. G. Hawthorn, R. W. Hill, C. Proust, F. Ronning, M. Suther-

land, E. Boaknin, C. Lupien, M. A. Tanatar, J. Paglione, S.
Wakimoto, H. Zhang, L. Taillefer, T. Kimura, M. Nohara, H.

Takagi, and N. E. Hussey, Phys. Rev. Lett. 90, 197004 �2003�.
7 X. F. Sun, S. Komiya, J. Takeya, and Y. Ando, Phys. Rev. Lett.

90, 117004 �2003�.
8 V. P. Gusynin and V. A. Miransky, Eur. Phys. J. B 37, 363

�2003�.
9 P. A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod. Phys. 78, 17

�2006�.
10 G.-Z. Liu and G. Cheng, Phys. Rev. D 67, 065010 �2003�.
11 V. P. Gusynin, V. A. Miransky, and I. A. Shovkovy, Phys. Rev.

Lett. 73, 3499 �1994�; Phys. Rev. D 52, 4718 �1995�.
12 E. J. Ferrer, V. P. Gusynin, and V. de la Incera, Eur. Phys. J. B

FIG. 2. �Color online� The dependence of the generated gap on
momentum and magnetic field for �=4 and g=200. � is the mo-
mentum cutoff.

JIANG, LIU, AND CHENG PHYSICAL REVIEW B 79, 174503 �2009�

174503-6



33, 397 �2003�.
13 A. S. Mel’nikov, J. Phys.: Condens. Matter 11, 4219 �1999�; M.

Franz and Z. Tesanovic, Phys. Rev. Lett. 84, 554 �2000�.
14 D. V. Khveshchenko, Phys. Rev. Lett. 87, 246802 �2001�.
15 E. V. Gorbar, V. P. Gusynin, V. A. Miransky, and I. A. Shovkovy,

Phys. Rev. B 66, 045108 �2002�.
16 G.-Z. Liu, W. Li, and G. Cheng, arXiv:0811.4471 �unpublished�.
17 H. Min, R. Bistritzer, J. J. Su, and A. H. MacDonald, Phys. Rev.

B 78, 121401�R� �2008�; C.-H. Zhang and Y. N. Joglekar, ibid.
77, 233405 �2008�.

18 J. H. Han, Q.-H. Wang, and D.-H. Lee, Int. J. Mod. Phys. B 15,
1117 �2001�; E. W. Carlson, V. J. Emery, S. A. Kivelson, and D.
Orgad, in The Physics of Conventional and Unconventional Su-
perconductors, edited by K. H. Bennemann and J. B. Ketterson
�Springer-Verlag, 2004�.

19 E. Roddick and D. Stroud, Phys. Rev. Lett. 74, 1430 �1995�; V.
J. Emery and S. A. Kivelson, ibid. 74, 3253 �1995�; A. J. Millis,
S. M. Girvin, L. B. Ioffe, and A. I. Larkin, J. Phys. Chem. Solids
59, 1742 �1998�; L. Benfatto, S. Caprara, C. Castellani, A.
Paramekanti, and M. Randeria, Phys. Rev. B 63, 174513 �2001�.

20 J. Orenstein and A. J. Millis, Science 288, 468 �2000�.
21 A. Hosseini, R. Harris, S. Kamal, P. Dosanjh, J. Preston, R.

Liang, W. N. Hardy, and D. A. Bonn, Phys. Rev. B 60, 1349
�1999�.

22 B. Lake, G. Aeppli, K. N. Clausen, D. F. McMorrow, K. Lef-
mann, N. E. Hussey, N. Mangkorntong, M. Nohara, H. Takagi,
T. E. Mason, and A. Schroder, Science 291, 1759 �2001�.

23 B. Lake, H. M. Ronnow, N. B. Christensen, G. Aeppli, K. Lef-
mann, D. F. McMorrow, P. Vorderwisch, P. Smeibidl, N.
Mangkarntong, T. Sasagawa, M. Nohara, H. Takagi, and T. E.
Mason, Nature �London� 415, 299 �2002�.

24 J. E. Hoffman, E. W. Hudson, K. M. Lang, V. Madhavan, H.
Eisaki, S. Uchida, and J. C. Davis, Science 295, 466 �2002�.

25 V. F. Mitrović, E. E. Sigmund, M. Eschrig, H. N. Bachman, W. P.
Halperin, A. P. Reyes, P. Kuhns, and W. G. Moulton, Nature
�London� 413, 501 �2001�.

26 B. Khaykovich, Y. S. Lee, R. W. Erwin, S.-H. Lee, S. Wakimoto,
K. J. Thomas, M. A. Kastner, and R. J. Birgeneau, Phys. Rev. B
66, 014528 �2002�.

27 B. Khaykovich, S. Wakimoto, R. J. Birgeneau, M. A. Kastner, Y.
S. Lee, P. Smeibidl, P. Vorderwisch, and K. Yamada, Phys. Rev.
B 71, 220508 �2005�.

28 J. Chang, Ch. Niedermayer, R. Gilardi, N. B. Christensen, H. M.
Rønnow, D. F. McMorrow, M. Ay, J. Stahn, O. Sobolev, A.
Hiess, S. Pailhes, C. Baines, N. Momono, M. Oda, M. Ido, and

J. Mesot, Phys. Rev. B 78, 104525 �2008�.
29 E. Demler, S. Sachdev, and Y. Zhang, Phys. Rev. Lett. 87,

067202 �2001�.
30 S. A. Kivelson, D.-H. Lee, E. Fradkin, and V. Oganesyan, Phys.

Rev. B 66, 144516 �2002�.
31 Z. Tesanovic, O. Vafek, and M. Franz, Phys. Rev. B 65,

180511�R� �2002�.
32 I. F. Herbut, Phys. Rev. Lett. 88, 047006 �2002�; Phys. Rev. B

66, 094504 �2002�.
33 S. G. Sharapov and J. P. Carbotte, Phys. Rev. B 73, 094519

�2006�.
34 The coupling g is related to the interaction parameter � defined

in graphene �Ref. 16� by g=8�.
35 T. Appelquist, D. Nash, and L. C. R. Wijewardhana, Phys. Rev.

Lett. 60, 2575 �1988�; D. Nash, ibid. 62, 3024 �1989�; P. Maris,
Phys. Rev. D 54, 4049 �1996�.

36 D. J. Lee and I. F. Herbut, Phys. Rev. B 66, 094512 �2002�; O.
Vafek, Z. Tesanovic, and M. Franz, Phys. Rev. Lett. 89, 157003
�2002�.

37 N. Dorey and N. E. Mavromatos, Phys. Lett. B 266, 163 �1991�;
N. Dorey and N. E. Mavromatos, Nucl. Phys. B 386, 614
�1992�; I. J. R. Aitchison, N. Dorey, M. Klein-Kreisler, and N.
E. Mavromatos, Phys. Lett. B 294, 91 �1992�.

38 G. E. Volovik, JETP Lett. 58, 469 �1993�.
39 F. Yu, M. B. Salamon, A. J. Leggett, W. C. Lee, and D. M.

Ginsberg, Phys. Rev. Lett. 74, 5136 �1995�.
40 C. Kubert and P. J. Hirschfeld, Solid State Commun. 105, 459

�1998�.
41 I. Vekhter, P. J. Hirschfeld, and E. J. Nicol, Phys. Rev. B 64,

064513 �2001�.
42 K. M. Shen, T. Yoshida, D. H. Lu, F. Ronning, N. P. Armitage,

W. S. Lee, X. J. Zhou, A. Damascelli, D. L. Feng, N. J. C. Ingle,
H. Eisaki, Y. Kohsaka, H. Takagi, T. Kakeshita, S. Uchida, P. K.
Mang, M. Greven, Y. Onose, Y. Taguchi, Y. Tokura, S. Komiya,
Y. Ando, M. Azuma, M. Takano, A. Fujimori, and Z.-X. Shen,
Phys. Rev. B 69, 054503 �2004�.

43 M. Sutherland, D. G. Hawthorn, R. W. Hill, F. Ronning, S.
Wakimoto, H. Zhang, C. Proust, E. Boaknin, C. Lupien, L.
Taillefer, R. Liang, D. A. Bonn, W. N. Hardy, R. Gagnon, N. E.
Hussey, T. Kimura, M. Nohara, and H. Takagi, Phys. Rev. B 67,
174520 �2003�.

44 In a more rigorous treatment, the full solution of gap function
m�p ,H� should be obtained by solving the closed integral equa-
tions of gap function �21� and of superfluid density �16�.

PARING INSTABILITY IN THE MIXED STATE OF A… PHYSICAL REVIEW B 79, 174503 �2009�

174503-7


